Luis Batista, Ph.D.

Funded by the Dick Vitale Gala with a gift from Derek and Christin Thompson in memory of Bryan Lindstrom

Bone marrow failure syndromes are a collection of disorders characterized by inadequate production of blood cell lineages from a common progenitor, the hematopoietic stem cell. Dyskeratosis congenita is an inherited bone marrow failure syndrome that comes to clinical attention during early childhood, and is associated with high rates of malignancy in children and young adults, with cancer being a major cause of death in patients. DNA sequencing efforts have established that dyskeratosis congenita has a clear genetic determinant, with patients carrying mutations in their DNA that affect the function of telomerase, a dedicated protein complex that is primarily responsible for maintaining the structure of our chromosomes.

Research regarding dyskeratosis congenita has been hampered by a lack of adequate models. In this proposal we are using genetically engineered human pluripotent stem cells to precisely determine the role that TERC, one of the main components of the telomerase complex, plays in bone marrow failure and cancer in children afflicted with dyskeratosis congenita.  Using our innovative model, we will understand the importance of TERC for stem cell regulation and blood development. Recently we developed the technology to differentiate these stem cells in a controlled, quantitative fashion, to become any particular blood cell type present in the circulatory system. This allows us to reproduce the clinical effect of this disease, in a tissue culture dish, and therefore precisely understand the disease progression in dyskeratosis congenita. Our goal is to help delineate novel treatment strategies against dyskeratosis congenita, a condition that currently has no cure.

Location: St. Louis Children's Hospital - Washington University - Missouri
Proposal: Regulation and Function of Telomerase RNA in Dyskeratosis Congenita
Mailing List Mailing List
Close Mailing List